首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   841篇
  免费   56篇
  国内免费   61篇
  2024年   2篇
  2023年   20篇
  2022年   31篇
  2021年   65篇
  2020年   45篇
  2019年   53篇
  2018年   69篇
  2017年   33篇
  2016年   37篇
  2015年   59篇
  2014年   81篇
  2013年   83篇
  2012年   56篇
  2011年   72篇
  2010年   39篇
  2009年   45篇
  2008年   37篇
  2007年   23篇
  2006年   19篇
  2005年   22篇
  2004年   10篇
  2003年   13篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有958条查询结果,搜索用时 648 毫秒
11.
12.
The four canonical bases that make up genomic DNA are subject to a variety of chemical modifications in living systems. Recent years have witnessed the discovery of various new modified bases and of the enzymes responsible for their processing. Here, we review the range of DNA base modifications currently known and recent advances in chemical methodology that have driven progress in this field, in particular regarding their detection and sequencing. Elucidating the cellular functions of modifications remains an ongoing challenge; we discuss recent contributions to this area before exploring their relevance in medicine.  相似文献   
13.
14.
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project ‘Principles of pluripotent stem cells underlying plant vitality’ was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.  相似文献   
15.
DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.  相似文献   
16.
The therapeutic potential of α,β‐thujone, a functional compound found in many medicinal plants of the Cupressaceae, Asteraceae, and Lamiaceae families, has been demonstrated, including in inflammation and cancers. However, its pharmacological functions and mechanisms of action in ovarian cancer remain unclear. We investigated the anticancer properties of α,β‐thujone in ES2 and OV90 human ovarian cancer cells and its effect on sensitization to cisplatin. α,β‐thujone inhibited cancer cell proliferation and induced cell death through caspase‐dependent intrinsic apoptotic pathways. Moreover, α,β‐thujone‐mediated endoplasmic reticulum stress was associated with the loss of mitochondrial functions and altered metabolic landscape of ovarian cancer cells. α,β‐Thujone attenuated blood vessel formation in transgenic zebrafish, implying it has significant antiangiogenic potential. In addition, α,β‐thujone sensitized ovarian cancer cells to cisplatin, causing synergistic pharmacological effects. Collectively, our results suggest that α,β‐thujone has therapeutic potential in human ovarian cancer and functions via regulating multiple intracellular stress‐associated metabolic reprogramming and caspase‐dependent apoptotic pathways.  相似文献   
17.
Mammalian fertilization begins with the fusion of two specialized gametes,followed by major epigenetic remodeling leading to the formation of a totipotent embryo.During the development of the pre-implantation embryo,precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality,but the underlying molecular mechanisms remain elusive.For the past few years,unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development,taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies.The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals,including DNA methylation,histone modifications,chromatin accessibility and 3D chromatin organization.  相似文献   
18.
BACKGROUNDThe development of regenerative therapy for human spinal cord injury (SCI) is dramatically restricted by two main challenges: the need for a safe source of functionally active and reproducible neural stem cells and the need of adequate animal models for preclinical testing. Direct reprogramming of somatic cells into neuronal and glial precursors might be a promising solution to the first challenge. The use of non-human primates for preclinical studies exploring new treatment paradigms in SCI results in data with more translational relevance to human SCI.AIMTo investigate the safety and efficacy of intraspinal transplantation of directly reprogrammed neural precursor cells (drNPCs).METHODSSeven non-human primates with verified complete thoracic SCI were divided into two groups: drNPC group (n = 4) was subjected to intraspinal transplantation of 5 million drNPCs rostral and caudal to the lesion site 2 wk post injury, and lesion control (n = 3) was injected identically with the equivalent volume of vehicle.RESULTSFollow-up for 12 wk revealed that animals in the drNPC group demonstrated a significant recovery of the paralyzed hindlimb as well as recovery of somatosensory evoked potential and motor evoked potential of injured pathways. Magnetic resonance diffusion tensor imaging data confirmed the intraspinal transplantation of drNPCs did not adversely affect the morphology of the central nervous system or cerebrospinal fluid circulation. Subsequent immunohistochemical analysis showed that drNPCs maintained SOX2 expression characteristic of multipotency in the transplanted spinal cord for at least 12 wk, migrating to areas of axon growth cones.CONCLUSIONOur data demonstrated that drNPC transplantation was safe and contributed to improvement of spinal cord function after acute SCI, based on neurological status assessment and neurophysiological recovery within 12 wk after transplantation. The functional improvement described was not associated with neuronal differentiation of the allogeneic drNPCs. Instead, directed drNPCs migration to the areas of active growth cone formation may provide exosome and paracrine trophic support, thereby further supporting the regeneration processes.  相似文献   
19.
The recent progress in derivation of pluripotent stem cells(PSCs)from farm animals opens new approaches not only for reproduction,genetic engineering,treatment and conservation of these species,but also for screening novel drugs for their efficacy and toxicity,and modelling of human diseases.Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages,or lost their cellular potency;indicating that the protocols which allowed the derivation of murine or human embryonic stem(ES)cells were not sufficient to support the maintenance of ES cells from farm animals.This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support na?ve pluripotency in ES cells from livestock species.However,the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging,and requires further refinements.Here,we review the current achievements in the derivation of PSCs from farm animals,and discuss the potential application areas.  相似文献   
20.
Reprogramming impairment of DNA methylation may be partly responsible for the low efficiency in somatic cell nuclear transfer. In this study, bovine fibroblast cells were transfected with enhancer green fluorescence protein (eGFP), and then treated with a histone-deacetylase inhibitor, trichostatin A (TSA). The results showed that the effect of TSA on transfected cells was dose dependent. When the TSA concentration was over 5 ng/ml, cell proliferation was significantly inhibited. The majority of the cells died when TSA reached 100 ng/ml (P < 0.01). The number of cells in the S phase was significantly decreased in the 5- to 50-ng/ml TSA-treated groups, while the majority of the cells were at the G0/G1 phases. The number of eGFP-expressed cells were approximately twofold higher in 25-ng/ml (30.5%) and 50-ng/ml (29.5%) TSA groups than the control (15.0%). Reduced DNA methylation and improved histone acetylation were observed when the cells were treated with 10 to 50 ng/ml of TSA. Transfer of the TSA-treated cells to enucleated recipient oocytes resulted in similar cleavage rates among the experimental groups and the control. Cells treated with 50 ng/ml of TSA resulted in significantly lower blastocyst development (9.9%) than the other experimental and the control groups (around 20%). Analysis of the putative blastocysts showed that 86.7% of the embryos derived from TSA-treated cells were eGFP positive, which was higher than that from untreated cells (68.8%). In conclusion, treatment of transfected cells with TSA decreased the genome DNA methylation level, increased histone acetylation, and eGFP gene expression was activated. Donor cells with reduced DNA methylation did not improve subsequent cloned embryo development; however, transgene expression was improved in cloned embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号